Tighter Regret Bounds for Influence Maximization and Other Combinatorial Semi-Bandits with Probabilistically Triggered Arms

نویسندگان

  • Qinshi Wang
  • Wei Chen
چکیده

We study combinatorial multi-armed bandit with probabilistically triggered arms and semi-bandit feedback (CMAB-T). We resolve a serious issue in the prior CMAB-T studies where the regret bounds contain a possibly exponentially large factor of 1/p, where p is the minimum positive probability that an arm is triggered by any action. We address this issue by introducing a triggering probability modulated (TPM) bounded smoothness condition into the general CMAB-T framework, and show that many applications such as influence maximization bandit and combinatorial cascading bandit satisfy this TPM condition. As a result, we completely remove the factor of 1/p from the regret bounds, achieving significantly better regret bounds for influence maximization and cascading bandits than before. Finally, we provide lower bound results showing that the factor 1/p is unavoidable for general CMAB-T problems, suggesting that the TPM condition is crucial in removing this factor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Regret Bounds for Combinatorial Semi-Bandits with Probabilistically Triggered Arms and Its Applications

We study combinatorial multi-armed bandit with probabilistically triggered arms and semi-bandit feedback (CMAB-T). We resolve a serious issue in the prior CMAB-T studies where the regret bounds contain a possibly exponentially large factor of 1/p∗, where p∗ is the minimum positive probability that an arm is triggered by any action. We address this issue by introducing a triggering probability m...

متن کامل

Combinatorial Multi-Armed Bandit and Its Extension to Probabilistically Triggered Arms

We define a general framework for a large class of combinatorial multi-armed bandit (CMAB) problems, where subsets of base arms with unknown distributions form super arms. In each round, a super arm is played and the base arms contained in the super arm are played and their outcomes are observed. We further consider the extension in which more base arms could be probabilistically triggered base...

متن کامل

Combinatorial Multi-armed Bandit with Probabilistically Triggered Arms: A Case with Bounded Regret

In this paper, we study the combinatorial multi-armed bandit problem (CMAB) with probabilistically triggered arms (PTAs). Under the assumption that the arm triggering probabilities (ATPs) are positive for all arms, we prove that a class of upper confidence bound (UCB) policies, named Combinatorial UCB with exploration rate κ (CUCB-κ), and Combinatorial Thompson Sampling (CTS), which estimates t...

متن کامل

Online Influence Maximization under Independent Cascade Model with Semi-Bandit Feedback

We study a stochastic online problem of learning to influence in a social network with semi-bandit feedback, individual observations of how influenced users influence others. Our problem combines challenges of partial monitoring, because the learning agent only observes the influenced portion of the network, and combinatorial bandits, because the cardinality of the feasible set is exponential i...

متن کامل

Matroid Bandits: Fast Combinatorial Optimization with Learning

A matroid is a notion of independence in combinatorial optimization which is closely related to computational efficiency. In particular, it is well known that the maximum of a constrained modular function can be found greedily if and only if the constraints are associated with a matroid. In this paper, we bring together the ideas of bandits and matroids, and propose a new class of combinatorial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1703.01610  شماره 

صفحات  -

تاریخ انتشار 2017